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It has been shown in the RB-71-35 that Gaussian quadrature sup-

plemented by a Newton-Raphson iteration technique is an.effective method

of calculation of tba Bivariate Normal (Tetrachoric) r Subsequent studies

made it apparent that significant improvements could easily be incorporated

into the calculation with relatively little increase in complexity, or cost,

of the computational technique. These improvements are discussed in this

supplemeat.

1. Estimates of the standard deviates h and k

The value of k may be written in the form

1 k - x2
(1) (k) = "ITT fo e 2 dx

where, in the notation of the original paper, 4, (k) is equivalent to .5

minus the marginal percentage, q . In the original model, Hastings' approx-
1

imation without any modification was used to estimate k, although a remark

was made that the result could be improved by an iteration technique.

It is apparent from this form of the integral that we are faced with

precisely the same problem as in our evaluation of r , namely, we must

compute (or estimate) a variable upper limit of a definite integral. There

is no reason, therefore, not to use the same algorithmic technique, i.e.,

Gaussian quadrature and Newton-Raphson iteration, to improve Hastings' esti-

mates. This seems even more feasible when one realizes the necessary calculation

ingredients, the Gaussian quadrature coefficients, the related weights, and

the iteration structure are already available for the evaluation of r



2. The Gaussian Quadrature.

The 5-point quadrature used in the original ..,tddy was quite rapid

and gave acceptable values except where the joint and marginal values were

close. However, an increase of only 3 points to an 8-point quadrature

resulted in the convergence of many values which previously had failed.

This increased accuracy is impor .t not only in the evaluation of the

final r integral, but of equal and perhaps greater benefit in establishing

more accurate values of the h and k parameters which make up the function.

Consider the following table:

Different Quadrature Effects on h and k Calculation

Area
h

true

Hastings'
Estimate

Unmodified

5-Point Quadrature 8-Point Quadrature

Value Iterations Value Iterations

.5 0 -1.01'10
-7

-.310
-13

1 -.4'10
-13

1

,

.158655254 1 .999968 1.0000004 2 1.0000002 2

.022750132 2 2.000435 2.000002 2 2.000001 2

.001349898 3 3.000314 3.00022 2 2.999990 2

Thus, a substantial improvement in the values of h and k is achiel7ed with

only two iterations

3. The Starting Estimate

En accordance with the above improvements, two terms of the series

expansion were used instead of one, and the resulting quadratic equation ia

r solved to provide a better starting estimate. Extreme values again cawsed

this estimate.to exceed 1, consequently it was necessary to set limiting

values as was done previously. Again, no one value seemed to assure convergence

over the entire range of r . For example, a P value of .001131 (1-. = 2, k = 3,

r = .80) failed to converge with a starting estimate of .97 but converged to



73-

.8003 readily with a lower value. On the other hand, a P value of .477473

(1.1 = 0, k = 0, r = .99) failed with a starting estimate of .90 but con-

verged in 5 iterations to .99096 with a starting estimate of .97. On the

assumption that the uajority of r calculations will be within the range

- .80 < r < .80 and only occasionally near the extreme values which tend

to give the most computational difficulty, the bounds were set at + .80

with a final pass using + .97 if the first fails to converge. Fairly

extensive testing has resulted in the convergence of all "reasonable"

values by this method.

4. The Convergence Criteria

Two convergence values were used in the attached examples:

1-10
-5

for both h and k calculations and 1.10
-4

for the r calculation.

The effect of these values is, of course, evident in the above table.

Summary_

Three versions rf * thus l'eadi_j availab_,_ for use:

1) 5-point quadrature, unmodified Hastings' estimates of h and k.

2) 5-point quadrature, improved estimates of h and k.

8-point quadrature, improved estimates of h and k.

ettached sheet of computer output indicates the range oL values for

the 8-point quadrature. An average calculation for the 8-poir= quadrature

requfrad .027 seconds per computed value of r vs .020 for. 21 5-point

quadr:Acure. On 50 x 50 matrix of "live" data an a, erage r r7aquired .018

seconLs using 8-pcint quadrature compared with .015 seconds f 5 points.

The stability of the ZAgher quadrature seems to justify its mse.
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